Microstructure, thermooxidation and mechanical behavior of a novel highly linear, vitamin E stabilized, UHMWPE.

نویسندگان

  • F J Medel
  • M J Martínez-Morlanes
  • P J Alonso
  • J Rubín
  • F J Pascual
  • J A Puértolas
چکیده

A novel, vitamin E-stabilized, medical grade ultra-high molecular polyethylene, MG003 (DSM Biomedical; The Netherlands), has been very recently introduced for use in total joint replacements. This homopolymer resin features average molecular weight similar to that of conventional GUR 1050 resin (5.5-6*10(6)g/mol), but a higher degree of linearity. The aim of this study was to characterize the microstructure, thermal and thermooxidation properties as well as the mechanical behavior of this novel MG003 resin before and after gamma irradiation in air to 90 kGy. For this purpose, a combination of experimental techniques were performed including differential scanning calorimetry (DSC), thermogravimetry (TG), transmission electron microscopy (TEM), X-Ray Diffraction, electron paramagnetic resonance (EPR), and uniaxial tensile tests. As-consolidated MG003 materials exhibited higher crystalline contents (~62%), transition temperatures (~140 °C), crystal thickness (~36 nm), yield stress (~25 MPa) and elastic modulus (~400 MPa) than GUR 1050 controls (55%, 136 °C, 27 nm, 19 MPa, and 353 MPa, respectively). Irradiation produced similar changes in both MG003 and GUR 1050 materials, specifically increased crystallinity (63% and 60%, respectively), crystal thickness (39 nm and 30 nm), yield stress (27 MPa and 21 MPa), but, above of all, loss of elongation to breakage (down to 442 and 469%, respectively). Thermogravimetric and EPR results suggest comparable susceptibilities to oxidation for both MG003 and GUR 1050 polyethylenes. Based on the present findings, MG003 appears as a promising alternative medical grade polyethylene and it may satisfactorily contribute to the performance of total joint replacements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vitamin E-blended UHMWPE with a Gradient Vitamin E Concentration

INTRODUCTION: Vitamin E-stabilized, radiation cross-linked ultra-high molecular weight polyethylene (UHMWPE) is used in total joint arthroplasty as a bearing surface with low wear and improved mechanical properties compared to irradiated and melted UHMWPE [1]. Vitamin E stabilizes the residual free radicals trapped in the material after irradiation and ensures oxidative resistance, thus resulti...

متن کامل

Reduction of Total Knee Replacement Wear with Vitamin E doped highly cross linked UHMWPE

Introduction: Ultra high molecular weight polyethylene (UHMWPE) is a common bearing component in Total Knee Replacement (TKR) implants, and its susceptibility to wear continues to be the long-term limiting factor in the life of these implants. Novel material modifications have been introduced to reduce UHMWPE wear rates and thus improve the life of TKRs. Radiation and crosslinking of UHMWPE hav...

متن کامل

Trace concentrations of vitamin E protect radiation crosslinked UHMWPE from oxidative degradation.

The effect of very low concentrations of Vitamin E on the stability and mechanical behavior of UHMWPE remains unknown. We tested the hypothesis that the oxidation resistance of Vitamin E-blended UHMWPE would be influenced by trace doses of antioxidant, resin, and radiation treatment. Trace concentrations (< or =500 ppm w/w%) of alpha-tocopherol (Vitamin E) were blended separately with GUR 1020 ...

متن کامل

Gelcasting as a Novel Processing Route to Fabricate Partially Stabilized Zirconia Ceramic Bodies

     Bioinert ceramics, like alumina and zirconia are used mainly for replacements of bones, hip joints and for dental implants. Partially stabilized zirconia ceramics (PSZ or TZP with 3 mol.% or 5 wt.% Y2O3), appear as perspective bioinert ceramics because of their high strength and corrosion resistance. In order to fabricate complex shapes, it is essential to use a near ...

متن کامل

Notch fatigue of ultrahigh molecular weight polyethylene (UHMWPE) used in total joint replacements.

Ultrahigh molecular weight polyethylene (UHMWPE) has remained the primary polymer used in hip, knee and shoulder replacements for over 50 years. Recent case studies have demonstrated that catastrophic fatigue fracture of the polymer can severely limit device lifetime and are often associated with stress concentration (notches) integrated into the design. This study evaluates the influence of no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Materials science & engineering. C, Materials for biological applications

دوره 33 1  شماره 

صفحات  -

تاریخ انتشار 2013